| Journal of Artificial Intelligence Research , Volume 16, 321 -- 357, 2002 |

SMOTE: Synthetic Minority Over-sampling
TEchnique

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall and W. Philip Kegelmeyer*
Department of Computer Science and Engineering, ENB 118
University of South Florida 4202 E. Fowler Ave.

Tampa, FI 33620
*Sandia National Laboratories
Biosystems Research Department, P.O. Box 969, MS 9951
Livermore, CA, 94551-0969, USA
Email:{chawla, kwb, hall}@csee.usf.edu, *wpk@ca.sandia.gov

Abstract

This paper describes an approach to dealing with construction of classifiers from im-
balanced datasets. A dataset is imbalanced if the classification categories are not approx-
imately equally represented. Usually real-world datasets are predominately composed
of “normal” examples with only a small percentage of “abnormal” or “interesting” exam-
ples. Often the cost of misclassifying an abnormal (interesting) example as a normal
example is much higher than the cost of the reverse error. Under-sampling of the major-
ity (normal) class has been proposed as a good means of increasing the sensitivity of a
classifier to the minority class. This paper shows that a combination of over-sampling the
minority (abnormal) class and under-sampling the majority (normal) class can achieve
better classifier performance than only under-sampling the majority class. Our method
of over-sampling the minority class involves creating synthetic minority class examples.
Performance is measured using the area under the Receiver Operating Characteristic
curve.

1 Introduction

A dataset is imbalanced if the classes are not approximately equally represented. Imbal-
ance on the order of 100 to 1 is prevalent in fraud detection and imbalance of up to 100,000
to 1 has been reported in other applications [Provost and Fawcett, 1997]. There have been
attempts to deal with imbalanced datasets in domains such as fraudulent telephone calls
[Fawcett and Provost, 1996], telecommunications management [Ezawa et al., 1996], text
classification [Lewis and Catlett, 1994] and detection of oil spills in satellite images [Kubat
et al., 1998].

Performance of machine learning algorithms is typically evaluated using predictive accu-
racy. However, this is not appropriate when the data is imbalanced and / or the costs dif-
ference of errors is large. For example, consider the classification of pixels in mammogram
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images for suspiciousness of cancer [Woods et al., 1993]. A typical mammography dataset
might contain 98% normal pixels and 2% abnormal pixels. A simple default strategy of
guessing the majority class would give a predictive accuracy of 98%. But the nature of the
application requires a fairly high rate of correct detection in the minority class and can
tolerate a small error rate in the majority class in order to achieve this. Simple predictive
accuracy is clearly not appropriate in such situations. The Receiver Operating Charac-
teristic (ROC) curve is a standard technique for summarizing classifier performance over
a range of tradeoffs between true positive and false positive error rates [Bradley, 1997]
[Swets, 1988]. The Area Under the Curve (AUC) is an accepted performance metric for an
ROC curve.

The machine learning community has addressed the issue of class imbalance in two ways.
One is to assign distinct costs to training examples [Pazzani et al., 1994] [Domingos, 1999].
The other is to re-sample the original dataset, either by over-sampling the minority class
and / or under-sampling the majority class [Kubat and Matwin, 1997] [Japkowicz, 2000]
[Lewis and Catlett, 1994] [Ling and Li, 1998]. Our approach blends under-sampling of
the majority class with a special form of over-sampling the minority class. Experiments
with various datasets and the C4.5 decision tree classifier [Quinlan, 1992] show that our
approach improves over other previous re-sampling approaches.

Section 2 gives an overview of performance measures. Section 3 reviews the most closely
related work dealing with imbalanced datasets. Section 4 presents the details of our
approach. Section 5 presents experimental results comparing our approach to other re-
sampling approaches. Section 6 discusses the results and suggests directions of future
work.

2 Previous Work: Imbalanced datasets

Provost and Fawcett (1997) have introduced the ROC convex hull method to estimate the
classifier performance for imbalanced datasets. They note that the problems of unequal
class distribution and unequal error costs are related and that little work has been done
to address either problem. In the ROC convex hull method, the ROC space is used to
separate classification performance from the class and cost distribution information. The
decision goal is projected on to the ROC space which generates a set of iso-performance
lines and after that a convex hull is generated. A point on the convex hull intersecting the
iso-performance line with the highest True Positive (TP)-intercept will be optimal.

Kubat and Matwin (1997) have looked at under-sampling as a plausible solution. They
selectively under-sampled the majority class while keeping the original population of the
minority class. They have used the geometric mean as a performance measure for the
classifier, which can be related to a single point on the ROC curve. The minority examples
were divided into four categories: some noise overlapping the positive class decision region,
borderline samples, redundant samples and safe samples. The borderline examples were
detected using the Tomek links concept [Tomek, 1976]. Another related work, [Kubat et
al., 1998] proposed the SHRINK system that classifies an overlapping region of minority
and majority classes as positive; it searches for the “best positive region”.

Japkowicz (2000) has discussed the effect of imbalance in the dataset. She has evaluated



three strategies: under-sampling, resampling and a recognition based induction scheme.
We focus on the sampling approaches. She experimented on artificial 1D data in order
to easily measure and construct concept complexity. Two resampling methods were con-
sidered. Random resampling consisted of resampling the smaller class at random until
it consisted of as many samples as the majority class and “focused resampling” consisted
of resampling only those minority examples that occurred on the boundary of minority
and majority. Random under-sampling was considered, which involved under-sampling
the majority class at random until it matched the minority class. Focused under-sampling
involved under-sampling the majority class samples lying further away. It was noted that
both the sampling approaches were effective and using the sophisticated sampling tech-
niques didn’t give any clear advantage in the domain considered.

One approach that is relevant to our work is that of Ling and Li (1998). They combine
over-sampling of the minority class with under-sampling of the majority class. They used
lift analysis instead of accuracy to measure a classifier’s performance. They proposed that
the testing examples be ranked by a confidence measurement and then lift be used as
the evaluation criteria. A lift curve is similar to ROC curve, but is more tailored for the
marketing analysis problem [Ling and Li, 1998]. Ada-boosted C4.5 and ada-boosted Naive
Bayes were the learning algorithms used for experiments. In one experiment, they under-
sampled the majority class and noted that the best lift index is obtained when the classes
are equally represented [Ling and Li, 1998]. In another experiment, they over-sampled the
positive (minority) examples with replacement to match the number of negative (majority)
examples to the number of positive examples. The over-sampling and under-sampling com-
bination didn’t get significant improvement in the lift index.

Lewis and Catlett (1994) examined heterogeneous uncertainty sampling for supervised
learning. This method is useful for training samples with uncertain classes. The training
samples are labeled incrementally in two phases and the uncertain instances are passed
on to the next phase. They modified C4.5 to include a loss ratio for determining the class
values at the leaves. The class values were determined by comparison with a probability
threshold of LR/(LR + 1).

Another approach that is similar to our work is that of Domingos (1999). He compares the
“metacost” approach to each of majority under-sampling and minority over-sampling. He
finds that metacost improves over either, and that under-sampling is preferable to minority
over-sampling. Error-based classifiers are made cost-sensitive. The probability of each
class for each example is estimated and the examples are then relabeled with the optimal
class by a cost matrix. The relabeling of the examples expands the decision space as it
creates new samples for the classifier to learn on.

To summarize the experience of the literature, under-sampling the majority class performs
better than over-sampling the minority class. A combination of the two as done in previous
work does not outperform only under-sampling. But, the over-sampling of the minority
class has been done by sampling with replacement from the original data. Our approach
uses a different method of over-sampling.



3 SMOTE: Synthetic Minority Over-sampling TEchnique

3.1 Minority over-sampling with replacement

The approach of over-sampling the minority class by sampling with replacement is seem-
ingly attractive. However, [Ling and Li, 1998] [Japkowicz, 2000] have discussed over-
sampling with replacement and have noted that there isn’t a significant improvement in
minority class recognition with it. We interpret the underlying effect in terms of decision
regions in feature space. Essentially, as the minority class is over-sampled by increasing
amounts, the effect, using decision trees, is to identify similar but more specific regions in
the feature space as the decision region for the minority class. This effect can be understood
from the plots in Figures 1, 2 and 3.

2-attributes, 10% data of the Mammography data
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Figure 1: a) Decision region the three minority class samples (shown by '+) come under.
The decision region is indicated by the solid-line rectangle. b) A zoomed-in view of the
chosen minority class samples for the same dataset. Dashed lines show the decision re-
gion after over-sampling the minority with synthetic generation and the small solid-line
rectangles show the effect of over-sampling the minority with replication.

The data for the plot in Figure 1 was extracted from a Mammography dataset [Woods et
al., 1993]'. The minority class samples are shown by + and the majority class samples
are shown by o in the plot. In Figure 1(a), the region indicated by the solid-line rectangle
is a majority class decision region. Nevertheless, it contains three minority class samples
shown by ’+ as false negatives. If we replicate the minority class, the decision region for
the minority class becomes very specific and will cause splits in the decision tree. This
will lead to more terminal nodes (leaves) as the learning algorithm tries to learn more
and more specific regions of the minority class; in essence, overfitting. Replication of the
minority class does not cause its decision boundary to spread into the majority class region.
Thus, in Figure 1(b), the three samples previously in the majority class decision region now
carve very specific decision regions around them.

IThe data is available from USF Intelligent Systems Lab, http:/morden.csee.usf.edu/~chawla



3.2 SMOTE

We propose an over-sampling approach that over-samples the minority class by creating
“synthetic” examples rather than by over-sampling with replacement. This approach is mo-
tivated by a technique that proved successful in handwritten character recognition [Thien
and Bunke, 1997]. The minority class is over-sampled by taking each minority class sam-
ple and introducing synthetic examples along the line segments joining any/all of the &
minority class nearest neighbors. Depending upon the amount of over-sampling required,
the neighbors from the k nearest neighbors are randomly chosen. Our implementation
currently uses five nearest neighbors. For instance, if the amount of over-sampling needed
is 200%, only two neighbors from the five nearest neighbors are chosen and one sample
is generated in the direction of each. Synthetic samples are generated by taking the dif-
ference between the feature vector (sample) under consideration and its nearest neighbor.
This difference is multiplied by a random number between 0 and 1, and added to the fea-
ture vector under consideration. This causes selection of a random point along the line
segment between two feature points. This approach effectively forces the decision region
of the minority class to become more general.

The synthetic examples push the classifier to create larger and less specific decision regions
as shown by the dashed lines in Figure 1(b), rather than smaller and more specific regions.
More general regions are now learned for the minority class samples rather than them be-
ing subsumed by the majority class samples around them. The effect is that decision trees
generalize better on unseen cases. Figures 2 and 3 compare the minority over-sampling
with replacement and SMOTE. The experiments were conducted on the mammography
dataset. There were 10923 examples in the majority class and 260 examples in the minor-
ity class originally. We had approximately 9831 examples in the majority class and 233
examples in the minority class for the training set used in 10-fold cross-validation. There
is a reduction in the sizes of the training and test sets as the original data was separated
into 90% for traiing and 10% for testing. The minority class was over-sampled at 100%,
200%, 300%, 400% and 500% of its original size. The performance and the decision tree
sizes are averages over 10-fold cross-validation. The graphs show that the tree size for
minority over-sampling with replacement is much greater than that for SMOTE, and the
minority class recognition performance of the minority over-sampling with replacement for
higher degrees of replication doesn’t increase as much as SMOTE.

3.3 Under-sampling and SMOTE Combination

The majority class is under-sampled by randomly removing samples from the majority
population. Under-sampling of the majority class is done so that the minority class be-
comes some percent of the majority class. This forces the learner to experience varying
degrees of under-sampling and at higher degrees of under-sampling the minority class has
a larger presence in the training set. For instance, under-sampling the majority class at
200% means that the modified dataset will contain twice as many samples from the mi-
nority class as from the majority class; that is, if the minority class has 50 samples and
the majority class has 200 samples and we under-sample the majority class at 200%, the
majority class would end up having 25 samples. By applying a combination of under-
sampling and over-sampling, the initial bias of the learner towards the negative (majority)
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Figure 2: Comparison of decision tree sizes for replicated over-sampling and SMOTE
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Figure 3: Comparison of % Minority correct for replicated over-sampling and SMOTE



class is reversed in the favor of the positive (minority) class. Decision trees are learned on
the dataset perturbed by “SMOTING” the minority class and under-sampling the majority
class.

4 Experiments

We compared various combinations of SMOTE and under-sampling against plain under-
sampling. We used C4.5 release 8 [Quinlan, 1992] as the base classifier. ROC curves
were plotted by taking %FP on the X-axis and %TP on the Y-axis. %FP and %TP were
averaged over the 10-fold cross-validation runs for each of the data combinations. The
minority class examples were over-sampled by calculating the five nearest neighbors and
generating synthetic examples. The AUC was calculated using the trapezoidal rule. We
extrapolated an extra point of TP = 100% and FP = 100% for each ROC curve.

4.1 Datasets

We experimented on six different datasets. In order of increasing imbalance they are:

1. Pima Indian Diabetes [Blake and Merz, 1998] has 2 classes and 768 samples. The
data is used to identify the positive diabetes cases in a population near Phoenix, Ari-
zona. The number of positive class samples is only 268. The sensitivity to detection
of diabetes cases will be a desirable attribute of the classifier.

2. Phoneme dataset is from the ELENA project 2. The aim of the dataset is to distin-
guish between nasal (class 0) and oral sounds (class 1). There are 5 attributes. The
class distribution is 3818 samples in class 0 and 1586 samples in class 1.

3. Satimage dataset [Blake and Merz, 1998] has 6 classes originally. We chose the small-
est class as the minority class and collapsed the rest of the classes into one [Provost
et al., 1998]. This gave us a skewed 2-class dataset, with 5809 majority class samples
and 626 minority class samples.

4. The Forest cover dataset from UCI repository [Blake and Merz, 1998]. This dataset
has 7 classes and 581,012 samples. This dataset is for the prediction of forest cover
type based on cartographic variables. Since our system only works for binary classes?
we extracted two classes data from this dataset and ignored the rest. The two classes
we considered are Ponderosa Pine with 35754 samples and Cottonwood/Willow with
2747 samples.

5. The Oil dataset was provided by Robert Holte and is used in their paper [Kubat et
al., 1998]. This dataset has 41 oil slick samples and 896 non-oil slick samples.

6. The Mammography dataset [Woods et al., 1993] has 11183 samples with 260 calcifi-
cations. If we look at predictive accuracy as a measure of goodness of the classifier

2ftp.dice.ucl.ac.be in the directory pub/neural-nets/ELENA/databases.
3Most other approaches only work for two classes,[Ling and Li, 1998] [Japkowicz, 2000] [Kubat and Matwin,
1997] [Provost and Fawcett, 1997]



for this case, the default accuracy would be 97.68% that is every sample is labeled
non-calcification. But, it is desirable for the classifier to predict more of calcifications
correctly.

4.2 ROC Creation

An ROC curve is produced by using C4.5 to create a classifier for each one of a series of
modified training datasets. A given ROC curve is produced by first over-sampling the mi-
nority class to a specified degree and then under-sampling the majority class at increasing
degrees to generate the successive points on the curve. Different ROC curves are produced
by starting with different levels of minority over-sampling.

Figures 4 and 5 show the experimental ROC graphs for two of the datasets discussed ear-
lier. In each Figure, the ROC curve for simple under-sampling of the majority class [Ling
and Li, 1998] [Japkowicz, 2000] [Kubat and Matwin, 1997] [Provost and Fawcett, 1997]
is compared with our approach of combining synthetic minority over-sampling (SMOTE)
and majority under-sampling. The simple under-sampling curve is labeled with “under”.
Depending on the size and relative imbalance of the dataset, one to five SMOTE and under-
sampling (over and under) curves are plotted.

We only show the winner SMOTE and under-sampling combination and the simple under-
sampling curve in the graphs. Each point on the ROC curve is a classifier learned for a
particular combination of under-sampling and over-sampling. The lower leftmost point for
a given ROC curve is the dataset without any majority class under-sampling and minority
class over-sampling, that is the performance of C4.5 on the original dataset.

For instance, in the set of ROC curves for the phoneme dataset, Figure 4, there are two
ROC curves. One is for simple under-sampling in which the range of under-sampling is
varied between 5% and 2000% at different intervals. The other curve is for the minority
class over-sampling with synthetic generation technique (SMOTE). The ROC shown is for
the minority class over-sampled at 200%. Each point on the SMOTE ROC curves repre-
sents a combination of over-sampling and under-sampling, the amount of under-sampling
follows the same range as laid down for the simple under-sampling technique. Table 1 lists
the AUCs for the ROC curves of all the datasets. The convention used in the table and
graphs is:

Under — > The majority class is under-sampled so that the majority class is some propor-
tion of minority class but the minority class is not over-sampled.

2z OU — > The minority class is over-sampled by 2% and the majority class is under-
sampled so that the majority class is some proportion of minority class.

The ROC curves show a trend that as we increase the amount of under-sampling coupled
with over-sampling, our minority classification accuracy increases, of course at the expense
of more majority class errors.
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Table 1: AUC’s with the best highlighted in bold
Dataset Under | 100 OU | 200 OU | 300 OU | 400 OU | 500 OU
Pima 7241.98 | 7301.17
Phoneme 8621.77 | 8643.99 | 8661.38
Satimage 8900.21 | 8956.69 | 8979.08 | 8962.86 | 8974.83 | 8960.05
Forest Cover 9807.35 | 9832.37 | 9834.18 | 9849.59 | 9841.19 | 9842.44
Mammography 9300 9264.04 | 9261.5 | 9316.53 | 9332.03 | 9302.23
0Oil 8524.4 | 8523.24 | 8368.03 | 8161.48 | 8339.08 | 8537.11

4.3 AUC Calculation

The Area Under the ROC curve (AUC) is calculated using a form of the trapezoid rule. The
lower leftmost point for a given ROC curve is the C4.5 performance on the raw data. The
upper rightmost point is always (100%, 100%). If the curve does not naturally end at this
point, the point is added. This is necessary in order for the AUC’s to be compared over the
same range of %FP.

The AUCs listed in the Table 1 show that for all datasets, the combined synthetic minor-
ity oversampling and majority oversampling is able to improve over plain majority over-
sampling. Thus, our SMOTE approach provides an improvement in sensitivity to correct
classification of data in the underrepresented class.

5 Summary and Discussion

The results show that the SMOTE approach holds a lot of promise. The SMOTE ap-
proach provides a new definition for over-sampling. The combination of SMOTE and under-
sampling performs better than plain under-sampling. The SMOTE approach was tested on
a variety of datasets, ranging in the degrees of imbalance and even the amount of data
in the training set, thus giving a diverse test bed. One limitation of SMOTE is that it is
only applicable for binary class problems with a continuous feature space. It forces focused
learning and introduces a learning bias towards the minority class. Usually, the minority
class is the positive class and the target that the classifier would want to maximize its
performance on.

The interpretation of why synthetic minority oversampling improves performance whereas
minority oversampling with replacement does not is actually fairly straightforward. Con-
sider the effect on the decision regions in feature space when minority oversampling is
done by replication (sampling with replacement) versus introduction of synthetic exam-
ples. With replication, the decision region that results in a classification decision for the
minority class can actually become smaller and more specific as the minority samples in the
region are replicated. This is the opposite of the desired effect. Our method of synthetic
over-sampling works to cause the classifier to build larger decision regions that contain
nearby minority class points.

There are many topics to be considered further in this line of research. Automated adaptive
selection of the number of nearest neighbors would be valuable. Different strategies for
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creating the synthetic neighbors may be able to improve the performance. Also, selecting
nearest neighbors with a focus on examples that are incorrectly classified may improve
performance.
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